
# PRUS

# YRT Rotary Table Bearings YRT回转支承轴承

YRT系列轴承主要用于加工中心、数控设备的回转工作台。其内部的三列圆柱滚子可同时承受较大的轴向负荷和径向负荷,具有很高的抗颠覆力矩能力。极高的旋转精度为高精密设备的加工精度等级提供了强有力的支持。产品的集成化设计可有效减少安装空间,并使设计得到了简化。

YRT bearings are mainly used in machning center and rotary disk of numerical—control equipment. Due to the triple—row cylindrical roller, the YRT bearing is able to afford heavy load both from radial and axial direction at the same time as well as good anti-turnover capability. Due to the extremely high running accuracy, the machining precision of those high—precise equipments are well guaranteed. The intergration design can help to save mounting space and simplize the equipment configuration design.



## PRUS

### Features:

YRT precision rotary table bearing is a kind of bearing fixed by a bidirectional thrust bearing and a centripetal—guided bearing. They can support radial loads, axial loads from both directions and tilting moments free from clearance and are particularly suitable for bearing arrangements with high requirements for running accuracy, like rotary tables, millings heads and reversible clamps. Due to the fixing holes in the bearing rings, the units are very easy to fit.

The bearings are radially and axially preloaded after fitting.



### Sealing/Lubricant:

YRT bearings are supplied with seals. YRT bearings are greased by a lithium complex soap grease and can be lubricated via the outer ring and L-section ring.

## Operating temperature:

YRT bearings are suitable for operating temperatures from  $30^\circ\!\!\mathrm{C}$  to  $120^\circ\!\!\mathrm{C}$ 

### Design and safety guidelines

Basic rating life:

The load carrying capacity and life must be checked for the radial and axial bearing component.

Please contact us in relation to checking of the basic rating life .The speed ,load and operating duration must be given.

Static load safety factor:

The static load safety factor S0 indicates the security against impermissible permanent deformations in the bearing.

It is determined as follows:

$$S_0 = \frac{C_{Or}}{F_{Or}} \text{ or } \frac{C_{Oa}}{F_{Oa}}$$

Static load safety factor :Cor Coa N

Basic static load rating according to dimension tables: For Foa N

Maximum static load on the radial or axial bearing.

Caution! In machine tools and similar areas of application, S0 should be >4

## Limiting speeds:

The bearings allow the limiting speeds given in the dimension tables. The operating temperatures occurring are heavily dependent on the environmental conditions. Calculation is possible by means of a thermal balance analysis based on frictional torque data.

#### Frictional torque:

The bearing frictional torque MRL is influenced primarily by the viscosity and quantity of the lubricant and the bearing preload.

The lubricant viscosity and quantity are dependent on the lubricant grade and operating temperature.

The bearing preload is dependent on the mounting fits, the geometrical accuracy of the adjacent parts, the temperature difference between the inner and outer ring, the screw tightening torque and the mounting situation.

1



### Starting torque:

For YRT bearing, it must be taken into consideration that the frictional torque can increase by a factor of between 2 and 2.5 with increasing speed.

## Accuracy of adjacent construction:

The adjacent construction should be produced in accordance with Figure and the tolerances must be in accordance with the tables starting on page. Any deviations will influence the bearing frictional torque ,running accuracy and running characteristics.



Requirements for the adjacent construction—YRT.

## Legend to Figure:

1. Support over whole bearing height. It must be ensured that the means of support has adequate rigidity.

2. A precise fit is only necessary if radial support due to the load or a precise bearing position is required.

3. Note the bearing diameter D<sub>1</sub> according to the dimension tables. Ensure that there is sufficient distance between the rotating bearing rings and the adjacent construction.

Geometrical and positional accuracy of the adjacent construction:

| Nominal shat<br>d<br>mm | ft diameter | Dev   | iation            | Roundness<br>Parallelism<br>Perpendicularity<br>t2,t2,t8 |  |  |  |  |  |
|-------------------------|-------------|-------|-------------------|----------------------------------------------------------|--|--|--|--|--|
| over                    | incl.       | for t | tolerance zone h5 | μm                                                       |  |  |  |  |  |
| 50                      | 80          | 0     | -13               | 3                                                        |  |  |  |  |  |
| 80                      | 120         | 0     | -15               | 4                                                        |  |  |  |  |  |
| 120                     | 150         | 0     | -18               | 5                                                        |  |  |  |  |  |
| 150                     | 180         | 0     | -18               | 5                                                        |  |  |  |  |  |
| 180                     | 250         | 0     | -20               | 7                                                        |  |  |  |  |  |
| 250                     | 315         | 0     | -23               | 8                                                        |  |  |  |  |  |
| 315                     | 400         | 0     | -25               | 9                                                        |  |  |  |  |  |
| 400                     | 500         | 0     | -27               | 10                                                       |  |  |  |  |  |
| 500                     | 630         | 0     | -28               | 11                                                       |  |  |  |  |  |
| 630                     | 800         | 0     | -32               | 12                                                       |  |  |  |  |  |
| 800                     | 1000        | 0     | -36               | 14                                                       |  |  |  |  |  |

Geometrical and positional accuracy for shafts-YRT

| Nominal shaft  D  mm | diameter | Deviati  | ion            | Roundness<br>Parallelism<br>Perpendicularity<br>t2,t2,t8 |  |  |  |  |  |
|----------------------|----------|----------|----------------|----------------------------------------------------------|--|--|--|--|--|
| over                 | incl.    | for tole | erance zone h5 | μm                                                       |  |  |  |  |  |
| 120                  | 150      | +18      | -7             | 5                                                        |  |  |  |  |  |
| 150                  | 180      | +18      | -7             | 5                                                        |  |  |  |  |  |
| 180                  | 250      | +22      | -7             | 7                                                        |  |  |  |  |  |
| 150                  | 315      | +25      | -7             | 8                                                        |  |  |  |  |  |
| 315                  | 400      | +29      | -7             | 9                                                        |  |  |  |  |  |
| 400                  | 500      | +33      | -7             | 10                                                       |  |  |  |  |  |
| 500                  | 630      | +34      | -7             | 11                                                       |  |  |  |  |  |
| 630                  | 800      | +38      | -8             | 12                                                       |  |  |  |  |  |
| 800                  | 1000     | +44      | -12            | 14                                                       |  |  |  |  |  |
| 1000                 | 1250     | +52      | -14            | 16                                                       |  |  |  |  |  |

Geometrical and positional accuracy for housings-YRT

## Mounting dimensions H1, H2:

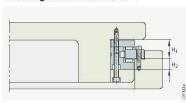
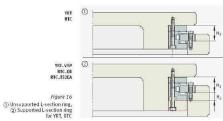



Figure 15
Mounting dimension H1、H2


L-section ring without support ring:

For the case "L-section ring without support ring", the bearing designation is :YRT<br/>bore diameter>

L-section ring with support ring:YRT bore diameter VSP

For the case "L-section ring with support ring", the bearing designation is :YRT<br/>bore diameter>VSP

Caution! For bearing arrangements with a supported L-section ring, only bearings with the suffix VSP、EB or T52EA can be ordered. If the normal design is mounted with a supported L-section ring, there will be a considerable increase in the bearing frictional torque. The support ring should be at least twice as the shaft locating washer of the bearing.





## Fitting:

Retaining screws secure the bearing components during transport, For easier centring of the bearing ,the screws should be loosened before fitting and either secured again or removed after fitting. Tighten the fixing screws in crosswise sequence by using a torque wrench in three stages to the specified tightening torque MA, rotating the bearing:

Stage 1 40% of MA

Stage 2 70% of MA

Stage 3 100% of MA

Observe the correct grade of the fixing screws.

Caution! Mounting forces must only be applied to the bearing ring to be fitted, never through the rolling elements. Bearing components must not be separated or interchanged during fitting and dismantling. If the bearing is unusually difficult to move ,loosen the fixing screws and tighten them again in steps with a crosswise sequence. This will eliminate any distortion. Bearings should only be fitted in accordance with ,Fitting and Maintenance Manual.

YRT Dimensional tolerances, mounting dimensions, axial and radial runout YRT

| Dimer   | nsional to | lerances   |           | Mount                | ing dim    | Axial<br>and radial<br>runout |                      |                      |               |                      |  |
|---------|------------|------------|-----------|----------------------|------------|-------------------------------|----------------------|----------------------|---------------|----------------------|--|
| Bore    |            | Outsid     |           |                      |            | Re-<br>stric-<br>ted          |                      | Re-<br>stric-<br>ted | Stan-<br>dart | Re-<br>stric-<br>ted |  |
| d<br>mm | ∆ds<br>mm  | D          | ΔDs<br>mm | H <sub>1</sub><br>mm | ΔH1s<br>mm | ∆H1s<br>mm                    | H <sub>2</sub><br>mm | ΔH2s<br>mm           | μm            | μm                   |  |
| 50      | -0.008     | 126        | -0.011    | 20                   | ±0.125     | ±0.025                        | 10                   | ±0.02                | 2             | 3                    |  |
| 80      | -0.009     | 146 -0.011 |           | 23.35                | ±0.15      | ±0.025                        | 11.7                 | ±0.02                | 3             | 1.5                  |  |
| 100     | -0.01      | 185        | -0.015    | 25                   | ±0.175     | ±0.025                        | 13                   | ±0.02                | 3             | 1.5                  |  |
| 120     | -0.01      | 210        | -0.015    | 26                   | ±0.175     | ±0.03                         | 14                   | ±0.02                | 3             | 1.5                  |  |
| 150     | -0.013     | 240        | -0.015    | 26                   | ±0.175     | ±0.03                         | 14                   | ±0.02                | 3             | 1.5                  |  |
| 180     | -0.013     | 280        | -0.018    | 29                   | ±0.175     | ±0.03                         | 14                   | ±0.025               | 4             | 2                    |  |
| 200     | -0.015     | 300        | -0.018    | 30                   | ±0.175     | ±0.04                         | 15                   | ±0.025               | 4             | 2                    |  |
| 260     | -0.018     | 385        | -0.02     | 36.5                 | ±0.2       | ±0.05                         | 18.5                 | ±0.025               | 6             | 3                    |  |
| 325     | -0.023     | 450        | -0.023    | 40                   | ±0.2       | ±0.05                         | 20                   | ±0.025               | 6             | 3                    |  |
| 395     | -0.023     | 525        | -0.028    | 42.5                 | ±0.2       | ±0.05                         | 22.5                 | ±0.025               | 6             | 3                    |  |
| 460     | -0.023     | 600        | -0.028    | 46                   | ±0.225     | ±0.06                         | 24                   | ±0.03                | 6             | 5 <sup>3</sup>       |  |
| 580     | -0.025     | 750        | -0.035    | 60                   | ±0.25      | ±0.075                        | 30                   | ±0.03                | 10            | 53                   |  |
| 650     | -0.038     | 870        | -0.05     | 78                   | ±0.25      | ±0.1                          | 44                   | ±0.03                | 10            | 5 <sup>3</sup>       |  |
| 852     | -0.05      | 1095       | -0.063    | 80.5                 | ±0.3       | ±0.12                         | 43.5                 | ±0.03                | 12            | 6³                   |  |
| 950     | -0.05      | 1200       | -0.063    | 86                   | ±0.3       | ±0.12                         | 46                   | ±0.03                | 12            | 6 <sup>3</sup>       |  |
| 1030    | -0.063     | 1300       | -0.08     | 92.5                 | ±0.3       | ±0.15                         | 52.5                 | ±0.03                | 12            | 6 <sup>3</sup>       |  |

For rotating inner and outer ring, measured on fitted bearing, with ideal adjacent construction. Special design, YRT only.

By agreement only for rotating outer ring.

Dimensional tolerances, mounting dimensions, axial and radial runout YRT speed

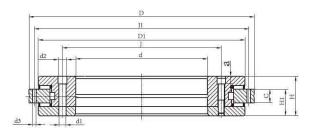
| Dir        | mensiona                       | tolerand | ces       | Moun                 | ting dime  | Axial<br>and radial<br>runout |    |  |
|------------|--------------------------------|----------|-----------|----------------------|------------|-------------------------------|----|--|
| Во         | 00 -0.015 300<br>60 -0.018 385 | -        |           |                      |            |                               |    |  |
|            |                                |          | ΔDs<br>mm | H <sub>1</sub><br>mm | ΔH1s<br>mm | H2<br>mm                      | μm |  |
| 200        | -0.015                         | 300      | -0.018    | 30                   | +0.04      | 15                            | 4  |  |
| 260        | -0.018                         | 385      | -0.02     | 36.5                 | +0.05      | 18.5                          | 6  |  |
| 325        | -0.023                         | 450      | -0.023    | 40                   | +0.06      | 20                            | 6  |  |
| 395        | -0.023                         | 525      | -0.028    | 42.5                 | +0.06      | 22.5                          | 6  |  |
| 460 -0.023 |                                | 600      | -0.028    | 46                   | +0.07      | 24                            | 6  |  |

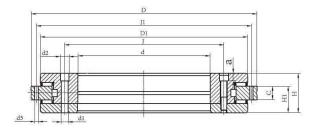
For rotating inner and outer ring, measured on fitted bearing, with ideal adjacent construction.

## Special designs:

For YRT, axial and radial runout tolerances reduced by 50%,

Additional text: axial/radial runout 50%


For YRT, loser tolerance on mounting dimensions H1 and H2.


Additional text:H1 with tolerance ± ······, H2 with tolerance ± ······

5



8





## YRT Rotary Table Bearing

7

| Bearing Code Boundary dimensions Fixing holes |         | Number of retaining Extract<br>screws |     |          | n thread | Number of pitches<br>X angle of pitches | Screw tightening torque Basic loa |          |          | ad rating Limiting speed |         |          | Bearing frictional torque | Weight   |    |     |          |          |         |          |       |        |      |       |     |     |
|-----------------------------------------------|---------|---------------------------------------|-----|----------|----------|-----------------------------------------|-----------------------------------|----------|----------|--------------------------|---------|----------|---------------------------|----------|----|-----|----------|----------|---------|----------|-------|--------|------|-------|-----|-----|
|                                               |         |                                       |     |          |          |                                         |                                   |          | Inner r  | Inner ring               |         | Ou       |                           | ter ring |    |     |          |          | MA      | Axial    |       | Radial |      |       |     |     |
|                                               | d<br>mm | D                                     | H   | H1<br>mm | C        | D <sub>1</sub> max<br>mm                | J<br>mm                           | J1<br>mm | d1<br>mm | d2<br>mm                 | a<br>mm | Quantity | d3<br>mm                  | Quantity |    | G   | Quantity | Quantity | N m     | Ca<br>Ca | Coa   | Cr.    | Cor  | r/min | N m | Kg  |
| YRT50                                         | 50      | 126                                   | 30  | 20       | 10       | 105                                     | 63                                | 116      | 5.6      |                          |         | 10       | 5.6                       | 12       | 2  |     |          | 12X30°   | 8.5     | 56       | 280   | 28.5   | 49.5 | 440   | 2.5 | 1.6 |
| YRT80-TV                                      | 80      | 146                                   | 35  | 23.35    | 12       | 130                                     | 92                                | 138      | 5.6      | 10                       | 4       | 10       | 4.6                       | 12       | 2  |     |          | 12X30°   | 8.5/4.5 | 38       | 158   | 44     | 98   | 350   | 3   | 2.4 |
| YRT100                                        | 100     | 185                                   | 38  | 25       | 12       | 160                                     | 112                               | 170      | 5.6      | 10                       | 5.4     | 16       | 5.6                       | 15       | 2  | M5  | 3        | 18X20°   | 8.5     | 73       | 370   | 52     | 108  | 280   | 3   | 4.1 |
| YRT120                                        | 120     | 210                                   | 40  | 26       | 12       | 184                                     | 135                               | 195      | 7        | 11                       | 6.2     | 22       | 7                         | 21       | 2  | M8  | 3        | 24X15°   | 14      | 80       | 445   | 70     | 148  | 230   | 7   | 5.3 |
| YRT150                                        | 150     | 240                                   | 40  | 26       | 12       | 214                                     | 165                               | 225      | 7        | 11                       | 6.2     | 34       | 7                         | 33       | 2  | M8  | 3        | 36X10°   | 14      | 85       | 510   | 77     | 179  | 210   | 13  | 6.2 |
| YRT180                                        | 180     | 280                                   | 43  | 29       | 15       | 244                                     | 194                               | 260      | 7        | 11                       | 6.2     | 46       | 7                         | 45       | 2  | M8  | 3        | 48X7.5°  | 14      | 92       | 580   | 83     | 209  | 190   | 14  | 7.7 |
| YRT200                                        | 200     | 300                                   | 45  | 30       | 15       | 274                                     | 215                               | 285      | 7        | 11                       | 6.2     | 46       | 7                         | 45       | 2  | M8  | 3        | 48X7.5°  | 14      | 98       | 650   | 89     | 236  | 170   | 15  | 9.7 |
| YRT260                                        | 260     | 385                                   | 55  | 36.5     | 18       | 345                                     | 280                               | 365      | 9.3      | 15                       | 8.2     | 34       | 9.3                       | 33       | 2  | M12 | 3        | 36X10°   | 34      | 109      | 810   | 102    | 310  | 130   | 25  | 18. |
| YRT325                                        | 325     | 450                                   | 60  | 40       | 20       | 415                                     | 342                               | 430      | 9.3      | 15                       | 8.2     | 34       | 9.3                       | 33       | 2  | M12 | 3        | 36X10°   | 34      | 186      | 1710  | 134    | 415  | 110   | 48  | 25  |
| YRT395                                        | 395     | 525                                   | 65  | 42.5     | 20       | 486                                     | 415                               | 505      | 9.3      | 15                       | 8.2     | 46       | 9.3                       | 45       | 2  | M12 | 3        | 48X7.5°  | 34      | 202      | 2010  | 133    | 435  | 90    | 55  | 33  |
| YRT460                                        | 460     | 600                                   | 70  | 46       | 22       | 560                                     | 482                               | 580      | 9.3      | 15                       | 8.2     | 46       | 9.3                       | 45       | 2  | M12 | 3        | 48X7.5°  | 34      | 217      | 2300  | 187    | 650  | 80    | 70  | 45  |
| YRT580                                        | 580     | 750                                   | 90  | 60       | 30       | 700                                     | 610                               | 720      | 11.4     | 18                       | 11      | 46       | 11.4                      | 42       | 2  | M12 | 6        | 48X7.5°  | 68      | 390      | 3600  | 211    | 820  | 60    | 140 | 89  |
| YRT650                                        | 650     | 870                                   | 122 | 78       | 34       | 800                                     | 680                               | 830      | 14       | 20                       | 13      | 46       | 14                        | 42       | 2  | M12 | 6        | 48X7.5°  | 116     | 495      | 5200  | 415    | 1500 | 55    | 200 | 170 |
| YRT850                                        | 850     | 1095                                  | 124 | 80.5     | 37       | 1018                                    | 890                               | 1055     | 18       | 26                       | 17      | 58       | 18                        | 54       | 2  | M12 | 6        | 60X6°    | 284     | 560      | 6600  | 475    | 1970 | 40    | 300 | 253 |
| YRT950                                        | 950     | 1200                                  | 132 | 86       | 40       | 1130                                    | 990                               | 1160     | 18       | 26                       | 17      | 58       | 18                        | 54       | 2  | M16 | 6        | 60X6°    | 284     | 1040     | 10300 | 600    | 2450 | 40    | 600 | 312 |
| YRT1030                                       | 1030    | 1300                                  | 145 | 92.5     | 40       | 1215                                    | 1075                              | 1255     | 18       | 26                       | 17      | 60       | 18                        | 66       | 12 | M16 | 6        | 72X5°    | 284     | 1080     | 11000 | 620    | 2650 | 35    | 800 | 375 |